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The periodic oscillations of an infinite plate have been studied. The 

problem, when solved by the method of [d, reduces to the Riemann bound- 

ary problem [21. The latter problem is solved approximately. The sub- 

stance of the approximation consists in the replacement of coefficients 

having a comparatively complex structure. thus permitting the coeffi- 

cients to be expressed in a more simple form. Then, by an inverse 

Fourier transformation applied to the solution of the Riemann problem, 

an approximate solution to the original problem is found. The solution 

is carried to the point of numerical results and the error in the 

approximation is estimated. 

1. We consider the equation 

AAu-P4u= 0 (u = u (x, y), p -numerical parameter) (1.1) 

on the strip 0 < y < 1, - ~0 < r < m, with the following boundary condi- 

t ions: 

u (z, i)=O, uyy (2, 1) = 0, u (z, 0) = 0, -00<x<00 

(1.2) 
uy (2, O)=O, 5 > 0, u&? 0) = f (x), x<O 

Equation (1.1) determines the amplitude of periodic oscillations of 

a thin plate, and conditions (1.2) indicate that the upper edge of the 

plate (y = 1) is hinged, that the right-hand half of the lower edge 

(x > 0. y = 0) is fixed and that the left-hand half of the lower edge 

(x < 0, y = 0) has a bending moment. 

A Fourier transformation will be used, and so for conditions (1.2) 

the derivatives oy(r, 0) and uyy(x, 0) are defined for all real axes. 
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We introduce functions T+(X) E 0. 

means of which f(z) is defined as 

(1.2) are written in the form 

u (z, 1) = 0, uyy (2, 1) = 0, u 

Iurchenko 

T_(Z) s 0 for x < 0 and x > 0, by 
identically zero for z > 0; conditions 

(LX, 0) --_ 0 

(-~<Z<oo) (2.3) 
ulr (2, 0) = q-- (4, uuv (2, 0) = f- (4 + ‘p+ (4 

The object of this work is to determine the functions T+(~) =u~~(~,O) 

and T_(X) = uy(x. 0) for x > 0 and x < 0, respectively. 

If a Fourier transformation in x is applied to equation (1.1) and to 

the boundary conditions (1.2)) then equation (1.1) leads to an ordinary 

differential equation 

in which the variable x is a parameter. and the boundary conditions 

(1.3) give’ 

u (x, 1) = 0, u,, (2, 1) = 0, Ii (2, 0) = 0 

(-~<r<oo) (1.5) 

u, (% 0) = cft- (rft u,, (2, 0) = F-(r) + Of (.=) 

where O’(X), m-(n) and F’(x) will be limiting values of functions 

analytically corresponding to the upper and lower semiplanes [31. 

The general solution of equation (1.4) has the form 

U (2, y) I= A (x) eyal + 23 (9~) epgal + C (z) eya* -+ D (z) e-yas 

(a1 = 1/z” + p”2, cz2 = Vrc” - $) 

Here A, R, C and D are arbitrary functions of x. 

Substitution of the function U(Z, y) and its derivatives Uy and Uyy 

into conditions (1.5) gives five relations among the functions A, B, C, 

D, 6ir and dr, from which by exclusion of A, B, C and D we obtain the 

Riemann boundary problem; the functions O+(Z) and Q)-(Z) analytically 

corresponding to the upper and lower semiplanes are found, SatiSfYing 

this relation on the real axis 

where 

CD+ (Cc) -- G (r) @- (2) - F- (z) (--<<<<cc) (1.6) 

2. The Riemann problem with boundary conditions (1.6) is solved 

approximately. We note that an exact solution may be found if @‘(CC) and 



,?lised oscillation problem for an infinite plate 1461 

a-(x) are expressed by integrals of the Cauchy type. Nevertheless, such 

a solution is not obtained here since the functions q+(x) = II (x, 0) 

and q__(x) = ay(x. 0) are found by an inverse Fourier transforiition from 

the solution of the Riemann problem, while the calculation when 0’ and 

@- are expressed by Cauchy integrals is difficult. The following example 

is presented to show this. 

Following Koiter [41, we substitute a rational function for the co- 

efficient (1.7) in the boundary condition (1.6). Then the solution of 

the approximate Riemann problem will have a simple expression from which 

the inverse Fourier transformation can be easily calculated. 

In order that the error arising from the substitution of an approxi- 

mate solution for the exact one not be too large, it is necessary to 

clarify in what sense the coefficient C(r) is a solution of the Riemann 

problem. The following problem is solved in relation to the class of 

solutions. For example, if in the original problem the function T_(X) 

is considered to be in the class L,(- ~0, 0) with the usual norm, then, 

as is made clear in Section 4, in determining the error one must strive 

for the smallest value of the maximum modulus of the difference between 

the exact and approximate coefficients of the Riemann problem (see 

formula (4.4)). This has been indicated by Cherskii [51. 

We return to relations (1.6). By substitution of the approximate co- 

efficient G(Z) we find the following properties of the function (1.7): 

it is even, it has no real roots, and it holds to infinity. C(x) is pre- 

sented in the form of a product 

(2.4) 

and for C,(X) we substitute the rational fraction 

For the problem under consideration it is sufficient to take n = 2. 

for which we set a2 = b, = 1. After substitution we obtain a Riemann 

problem with the boundary condition 

Yy+ (2) = - 2p2 y-/22 4 :a ; ;I; $ ;” Y- (z) - F- (CT) (- CQ < x < 4 (2.2) 
0 

The coefficients ae, al, b, and b, and determined from a linear 

system obtained by equating GI (x) and P(X) at four values of X. For 

example, if ~1 is set equal to 1 in equation (1.1) and values of x are 

fixed as 0. 1, 2 and 5. we obtain 

a0 = 9.3745, a1 = 4.3305, b,, = 6.2898, b, = 5.0195 (2.3) 
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If in P(X) the numerators of the roots are denoted by ~1 2 =*(a+ ip) 

and X3.4 = *(a - ip), and the denominators by x5 6 = k(y +‘i6) and 

r7,8 = +(y - ifs), where a, /3, y and 6 are positite numbers, the P(r) is 

in the form of a ratio 

P (2) = g.$ , xlf (x) = fr - a + is) (x + a + iBt 
(x - 7, + 24 (z + T + ist 

(2.4) 

x- tx. = (x t- T - is) (x - +( - is) 
(I + a - $3) (x - u - ifi) 

Let J(x* + p*) = - \I(z + ;)v)) J(z - i/p]). We choose a positive 

value of the root 46’ f ~1~). For 4 (X + i 1 ~1) we take a branch determined 

by the equality of 4 (X + i]u])X=+O = 4 (p/2)(1 + i); then the branch of 

the root 4 (X - / / L p ) is automatically determined, and the relation (2.2) 

may be written in the form 

y+ (z) = 2F2 t/x + i I tc I vx - i I p‘ I Xi fx) y - +,) _ F_ (x) 

x- (x) 

From this it follows that 

The free member in this equality may be represented by the Sokhotskii 

formula 

F- (4 F- (4 F- (4 I 
_ 

v’xqi1 x+ (x) = ~‘q-i--j-qx+ (x) - T/x -t- i I p I Xf (4 
(2.6) 

where the plus and minus signs on the brackets signify that the right- 

hand sums are limiting values of a Cauchy type integral with a density 

~-(x)[\i(x + ilp! )~+(z)l-~ when z -, z corresponding to the upper and 

lower semiplanes. 

It follows from (2.5) and (2.6) that 

ur+ (2) 1 P- (x) 

1 

+ 

I/r+ii&LIx+(I)+ 1/2+iIPlx+w = 
= wvx- iiFlY-64 + 

t 

F-(x) - 

x- (4 v-x+ ilpIx’+@) I 
Ry an application of the principle of analytic continuation and the 

generalized Liouville theorem to this equality we get for the solution 

to the approximate Riemann problem 

(2.7) 
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Y- (cc) = - 
x- (4 F-(z) - I (2.7) 

2$ v^z - 
__I- 

dz+ illLIx+&) 

3. Approximate expressions for the functions Y+.(X) = u~~(x, 0) and 

F_(Z) = u (r, 0) are found by inverse Fourier transformations of the 

functionsYY’(x) and ‘f’- (x). rVe limit ourselves to a determination of 

y_(x): the approximation for q_(r) = uy(n, 0). 

For the calculations we use the relations 

(3.1) 

(1 - i) q (2) eeb”/ 1 ViJ 1 (Reb>O) 

- (1 - i) q (- x) eebr / 11/-G 1 
(3.2) 

(Rei<O) 

q (t) = 1 for t > 0, q(t) =o for t<o) 

We expand [X+(x)3 -I and X-(X) as simple fractions. We obtain, taking 

(2.4) into account 

v+ (41-l = 1 + x _ a”+ $ + T x+a+$ 

X-(x) = 1+ M + N 
x-a--i@ r+u-i@ 

The formulas obtained are substituted into the expression for Y”(r); 

application of the properties of the Fourier transformation, as well as 

relations (3.1) and (3.2), gives for the function y_(x) 

0 a 

- erkt”i-t’F(1/PH12.-_t)UK(1)dt (x<O) 

In this we have 

e” dx, w (t) = - (t<o) 
0 

t 
enk(t-u)F(l/mk(t-u I)f_(u)du 0 < 0) (!c = 1, 2, 5, 6, 7, 8) 

rk @) = w ($1 (k = 3, 4) 
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p1 = 2iS, ps = - 4MS, m,=m5=m7=q3=q,=q8=~-J~~+ia 

pz = 2iT, pa = - 4MT, m2=m6=m8=q4=q7=q8=fl- IpI-ia 

p3 = 2iM, pi = - JNS, - n, = - ns = - n, = r4 = r7 = r8 = p +,ia 

p4 = 2iN, p8 = - 4NT, - n, = - ne = - n8 I r3 = r6 = r6 = $ - ia 

Numerical values for the coefficients of the rational function for 

the approximate Riemann problem are obtained from equation (2.3) as 

p = I. a = 0.66952, 0 = 1.6166, S = - 5; = ;2? = - N = 0.33463 - 0.03271 i 

The calculation of V+(X) is analogous. 

4. We calculate the relative error in the approximate solution for 

V_(X) - This function is considered to be an element of class L,(- m, 0) 
with a norm 

jl4- II:, = \ I$- (I) I* dx 

--co 

The function ‘i’-(x), appearing as the Fourier transformation for 

y_(r) t belongs to class Lg(- m, m) and by virtue of the Parseval equal- 

ity 131 we Aave 

;I$- II;, = II ‘I’- II;, = 5 I Y- (4 la dx 
--Co 

Let the known function f_(x) also belong to class Lz(- ~0, 0) and the 

norms of f_(x) and F-(S) be determined analogously to the norms of 

w_(z) and Y(x). 

For calculation of the error we make use of the inequality 

8 = II cp- - o- llLz ilK - K, II PC2 II 
11% Ik, ’ 1 - IIK - K* II II K,-’ II (4.1) 

which comes from the general theory of approximate methods [Sl. For this, 

q_(x) is the solution of the exact equation Kp_ = f_ corresponding 

(through a Fourier transformation) to the equality 

and is obtained from the boundary condition (1.6) of the exact Riemann 

problem, while y_(x) is the solution of the approximate equation 

Ky, =f_a corresponding to the equality 
*- 

[211” 1/z” + p2 P (x) Y- (z)]- = - F- (I) (4.3) 

from the boundary condition (2.2) in the approximate Riemann problem. 
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The minus signs on the brackets in equations (4.2) and (4.3) have the 

same meaning as in equation (2.6). 

We note also that K and K are linear operators (not required to be 

bounded but here bounded likt the operator K - K ) translating elements 

of the L2(- ~0, 0) space into elements of this saie space. We note that 

the approximate equation K y_ = f_ is easily solved and that the inverse 

(bounded) operator K -1 is*known. 

The errors in 11 K:-I 11 and in /IX-K* fl are obtained as 

1 x- (4 I 1 

llK*-‘;JqFmax $Fx_ ilp, maX ivx+ i)plx+(x)I 

(4.4) 

where the function C,(x) and P(Z) are taken from equalities (2.1) and 

(2.2)) respectively. 

It is seen from formulas (4.4) that the approximate coefficients of 

the Riemann problem must approach these values in order that the modulus 

of the difference between the exact and approximate coefficients be as 

small as possible. 

By a substitution of the errors obtained for II K -’ II and for II K-KJl 

into inequality (4.1) we find the relative error in*the approximate 

solution for y_(x). For ~1 = 1 and the values of ae, al, b, and b, from 

(2.3) we obtain 

[I K,-l I/ < 0.336, /I K - K, /I < 0.03, 6 < 0.0102 

Consequently, in this case the relative error does not exceed 1.02 

per cent. 

5. We consider an example. In the boundary conditions (1.3) let 

where o is a real parameter. In this case we are led to a Riemann prob- 

lem in the functions Q’(z) and dr(x) with the boundary condition 

Upon setting p = 1 and substituting coefficients obtained for the 

function P(r) = X+(f) LX-(.Y$-1 we pass to the approximate Riemann problem 

y+ (x) = - 
2 -r/z” + 1 x+ (r) 

x- (x) y- tx) + vs ;;- ih) 
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Xf (2) = lx 4 u + 4% tx - u + $3 , 
(x + 4) (x + ‘8,) 

a = 0.66952, p = 1.6266, 

The solution of the approximate 

x- (z) = (32 - is,) (x - is,) 
(x - a - i/3) (72 + a - is) 

6, = 1.5541, 6, = 1.6138 

Riemann problem will be the functions 

Y+ (xl += -$& F 1 
-- 

k v-(1 7/5+i (x + u + ifg (x-a + i/J) 

x- iA (i - A) (r+ is,) (x + iti,) I 
U’-(x) = - 

- ick v(l -1 n) i (z- is,) (Z - 3,) 

2 v27;;1/zZ? (i ~~ iA) (~9 ~ a - ip) (r + cc - $3, 

( 
‘k = - i (h i_ 6,) (h + 8,) 

(t + A) be + (A + BYI 

The inverse Fourier transformatjons give 

The author thanks Iu.1. Cherskii for usef’ul discussions. 
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